摘要: 正弦函数性质 定义域: 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1 ②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1 零值点:(kπ,0) ,k∈Z 对...
正弦函数性质
定义域:
实数集R
值域
[-1,1] (正弦函数有界性的体现) 最值和零点
①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1
②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1
零值点:(kπ,0) ,k∈Z
对称性
既是轴对称图形,又是中心对称图形。
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称
2)中心对称:关于点(kπ,0),k∈Z对称
周期性
最小正周期:y=sinx T=2π
奇偶性
奇函数 (其图象关于原点对称)
单调性
在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增. 在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.
单位圆定义
图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于 sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度 1,所以有了 sinθ=y/1。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。即sinθ=AB,与y轴正方向一样时正,否则为负