Django 5.1.dev 文档

django.contrib.auth.hashers 源代码

import base64
import binascii
import functools
import hashlib
import importlib
import math
import warnings

from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.core.signals import setting_changed
from django.dispatch import receiver
from django.utils.crypto import (
    RANDOM_STRING_CHARS,
    constant_time_compare,
    get_random_string,
    pbkdf2,
)
from django.utils.module_loading import import_string
from django.utils.translation import gettext_noop as _

UNUSABLE_PASSWORD_PREFIX = "!"  # This will never be a valid encoded hash
UNUSABLE_PASSWORD_SUFFIX_LENGTH = (
    40  # number of random chars to add after UNUSABLE_PASSWORD_PREFIX
)


[文档] def is_password_usable(encoded): """ Return True if this password wasn't generated by User.set_unusable_password(), i.e. make_password(None). """ return encoded is None or not encoded.startswith(UNUSABLE_PASSWORD_PREFIX)
def verify_password(password, encoded, preferred="default"): """ Return two booleans. The first is whether the raw password matches the three part encoded digest, and the second whether to regenerate the password. """ if password is None or not is_password_usable(encoded): return False, False preferred = get_hasher(preferred) try: hasher = identify_hasher(encoded) except ValueError: # encoded is gibberish or uses a hasher that's no longer installed. return False, False hasher_changed = hasher.algorithm != preferred.algorithm must_update = hasher_changed or preferred.must_update(encoded) is_correct = hasher.verify(password, encoded) # If the hasher didn't change (we don't protect against enumeration if it # does) and the password should get updated, try to close the timing gap # between the work factor of the current encoded password and the default # work factor. if not is_correct and not hasher_changed and must_update: hasher.harden_runtime(password, encoded) return is_correct, must_update
[文档] def check_password(password, encoded, setter=None, preferred="default"): """ Return a boolean of whether the raw password matches the three part encoded digest. If setter is specified, it'll be called when you need to regenerate the password. """ is_correct, must_update = verify_password(password, encoded, preferred=preferred) if setter and is_correct and must_update: setter(password) return is_correct
[文档] async def acheck_password(password, encoded, setter=None, preferred="default"): """See check_password().""" is_correct, must_update = verify_password(password, encoded, preferred=preferred) if setter and is_correct and must_update: await setter(password) return is_correct
[文档] def make_password(password, salt=None, hasher="default"): """ Turn a plain-text password into a hash for database storage Same as encode() but generate a new random salt. If password is None then return a concatenation of UNUSABLE_PASSWORD_PREFIX and a random string, which disallows logins. Additional random string reduces chances of gaining access to staff or superuser accounts. See ticket #20079 for more info. """ if password is None: return UNUSABLE_PASSWORD_PREFIX + get_random_string( UNUSABLE_PASSWORD_SUFFIX_LENGTH ) if not isinstance(password, (bytes, str)): raise TypeError( "Password must be a string or bytes, got %s." % type(password).__qualname__ ) hasher = get_hasher(hasher) salt = salt or hasher.salt() return hasher.encode(password, salt)
@functools.lru_cache def get_hashers(): hashers = [] for hasher_path in settings.PASSWORD_HASHERS: hasher_cls = import_string(hasher_path) hasher = hasher_cls() if not getattr(hasher, "algorithm"): raise ImproperlyConfigured( "hasher doesn't specify an algorithm name: %s" % hasher_path ) hashers.append(hasher) return hashers @functools.lru_cache def get_hashers_by_algorithm(): return {hasher.algorithm: hasher for hasher in get_hashers()} @receiver(setting_changed) def reset_hashers(*, setting, **kwargs): if setting == "PASSWORD_HASHERS": get_hashers.cache_clear() get_hashers_by_algorithm.cache_clear() def get_hasher(algorithm="default"): """ Return an instance of a loaded password hasher. If algorithm is 'default', return the default hasher. Lazily import hashers specified in the project's settings file if needed. """ if hasattr(algorithm, "algorithm"): return algorithm elif algorithm == "default": return get_hashers()[0] else: hashers = get_hashers_by_algorithm() try: return hashers[algorithm] except KeyError: raise ValueError( "Unknown password hashing algorithm '%s'. " "Did you specify it in the PASSWORD_HASHERS " "setting?" % algorithm ) def identify_hasher(encoded): """ Return an instance of a loaded password hasher. Identify hasher algorithm by examining encoded hash, and call get_hasher() to return hasher. Raise ValueError if algorithm cannot be identified, or if hasher is not loaded. """ # Ancient versions of Django created plain MD5 passwords and accepted # MD5 passwords with an empty salt. if (len(encoded) == 32 and "$" not in encoded) or ( len(encoded) == 37 and encoded.startswith("md5$$") ): algorithm = "unsalted_md5" # Ancient versions of Django accepted SHA1 passwords with an empty salt. elif len(encoded) == 46 and encoded.startswith("sha1$$"): algorithm = "unsalted_sha1" else: algorithm = encoded.split("$", 1)[0] return get_hasher(algorithm) def mask_hash(hash, show=6, char="*"): """ Return the given hash, with only the first ``show`` number shown. The rest are masked with ``char`` for security reasons. """ masked = hash[:show] masked += char * len(hash[show:]) return masked def must_update_salt(salt, expected_entropy): # Each character in the salt provides log_2(len(alphabet)) bits of entropy. return len(salt) * math.log2(len(RANDOM_STRING_CHARS)) < expected_entropy class BasePasswordHasher: """ Abstract base class for password hashers When creating your own hasher, you need to override algorithm, verify(), encode() and safe_summary(). PasswordHasher objects are immutable. """ algorithm = None library = None salt_entropy = 128 def _load_library(self): if self.library is not None: if isinstance(self.library, (tuple, list)): name, mod_path = self.library else: mod_path = self.library try: module = importlib.import_module(mod_path) except ImportError as e: raise ValueError( "Couldn't load %r algorithm library: %s" % (self.__class__.__name__, e) ) return module raise ValueError( "Hasher %r doesn't specify a library attribute" % self.__class__.__name__ ) def salt(self): """ Generate a cryptographically secure nonce salt in ASCII with an entropy of at least `salt_entropy` bits. """ # Each character in the salt provides # log_2(len(alphabet)) bits of entropy. char_count = math.ceil(self.salt_entropy / math.log2(len(RANDOM_STRING_CHARS))) return get_random_string(char_count, allowed_chars=RANDOM_STRING_CHARS) def verify(self, password, encoded): """Check if the given password is correct.""" raise NotImplementedError( "subclasses of BasePasswordHasher must provide a verify() method" ) def _check_encode_args(self, password, salt): if password is None: raise TypeError("password must be provided.") if not salt or "$" in salt: raise ValueError("salt must be provided and cannot contain $.") def encode(self, password, salt): """ Create an encoded database value. The result is normally formatted as "algorithm$salt$hash" and must be fewer than 128 characters. """ raise NotImplementedError( "subclasses of BasePasswordHasher must provide an encode() method" ) def decode(self, encoded): """ Return a decoded database value. The result is a dictionary and should contain `algorithm`, `hash`, and `salt`. Extra keys can be algorithm specific like `iterations` or `work_factor`. """ raise NotImplementedError( "subclasses of BasePasswordHasher must provide a decode() method." ) def safe_summary(self, encoded): """ Return a summary of safe values. The result is a dictionary and will be used where the password field must be displayed to construct a safe representation of the password. """ raise NotImplementedError( "subclasses of BasePasswordHasher must provide a safe_summary() method" ) def must_update(self, encoded): return False def harden_runtime(self, password, encoded): """ Bridge the runtime gap between the work factor supplied in `encoded` and the work factor suggested by this hasher. Taking PBKDF2 as an example, if `encoded` contains 20000 iterations and `self.iterations` is 30000, this method should run password through another 10000 iterations of PBKDF2. Similar approaches should exist for any hasher that has a work factor. If not, this method should be defined as a no-op to silence the warning. """ warnings.warn( "subclasses of BasePasswordHasher should provide a harden_runtime() method" ) class PBKDF2PasswordHasher(BasePasswordHasher): """ Secure password hashing using the PBKDF2 algorithm (recommended) Configured to use PBKDF2 + HMAC + SHA256. The result is a 64 byte binary string. Iterations may be changed safely but you must rename the algorithm if you change SHA256. """ algorithm = "pbkdf2_sha256" iterations = 870000 digest = hashlib.sha256 def encode(self, password, salt, iterations=None): self._check_encode_args(password, salt) iterations = iterations or self.iterations hash = pbkdf2(password, salt, iterations, digest=self.digest) hash = base64.b64encode(hash).decode("ascii").strip() return "%s$%d$%s$%s" % (self.algorithm, iterations, salt, hash) def decode(self, encoded): algorithm, iterations, salt, hash = encoded.split("$", 3) assert algorithm == self.algorithm return { "algorithm": algorithm, "hash": hash, "iterations": int(iterations), "salt": salt, } def verify(self, password, encoded): decoded = self.decode(encoded) encoded_2 = self.encode(password, decoded["salt"], decoded["iterations"]) return constant_time_compare(encoded, encoded_2) def safe_summary(self, encoded): decoded = self.decode(encoded) return { _("algorithm"): decoded["algorithm"], _("iterations"): decoded["iterations"], _("salt"): mask_hash(decoded["salt"]), _("hash"): mask_hash(decoded["hash"]), } def must_update(self, encoded): decoded = self.decode(encoded) update_salt = must_update_salt(decoded["salt"], self.salt_entropy) return (decoded["iterations"] != self.iterations) or update_salt def harden_runtime(self, password, encoded): decoded = self.decode(encoded) extra_iterations = self.iterations - decoded["iterations"] if extra_iterations > 0: self.encode(password, decoded["salt"], extra_iterations) class PBKDF2SHA1PasswordHasher(PBKDF2PasswordHasher): """ Alternate PBKDF2 hasher which uses SHA1, the default PRF recommended by PKCS #5. This is compatible with other implementations of PBKDF2, such as openssl's PKCS5_PBKDF2_HMAC_SHA1(). """ algorithm = "pbkdf2_sha1" digest = hashlib.sha1 class Argon2PasswordHasher(BasePasswordHasher): """ Secure password hashing using the argon2 algorithm. This is the winner of the Password Hashing Competition 2013-2015 (https://password-hashing.net). It requires the argon2-cffi library which depends on native C code and might cause portability issues. """ algorithm = "argon2" library = "argon2" time_cost = 2 memory_cost = 102400 parallelism = 8 def encode(self, password, salt): argon2 = self._load_library() params = self.params() data = argon2.low_level.hash_secret( password.encode(), salt.encode(), time_cost=params.time_cost, memory_cost=params.memory_cost, parallelism=params.parallelism, hash_len=params.hash_len, type=params.type, ) return self.algorithm + data.decode("ascii") def decode(self, encoded): argon2 = self._load_library() algorithm, rest = encoded.split("$", 1) assert algorithm == self.algorithm params = argon2.extract_parameters("$" + rest) variety, *_, b64salt, hash = rest.split("$") # Add padding. b64salt += "=" * (-len(b64salt) % 4) salt = base64.b64decode(b64salt).decode("latin1") return { "algorithm": algorithm, "hash": hash, "memory_cost": params.memory_cost, "parallelism": params.parallelism, "salt": salt, "time_cost": params.time_cost, "variety": variety, "version": params.version, "params": params, } def verify(self, password, encoded): argon2 = self._load_library() algorithm, rest = encoded.split("$", 1) assert algorithm == self.algorithm try: return argon2.PasswordHasher().verify("$" + rest, password) except argon2.exceptions.VerificationError: return False def safe_summary(self, encoded): decoded = self.decode(encoded) return { _("algorithm"): decoded["algorithm"], _("variety"): decoded["variety"], _("version"): decoded["version"], _("memory cost"): decoded["memory_cost"], _("time cost"): decoded["time_cost"], _("parallelism"): decoded["parallelism"], _("salt"): mask_hash(decoded["salt"]), _("hash"): mask_hash(decoded["hash"]), } def must_update(self, encoded): decoded = self.decode(encoded) current_params = decoded["params"] new_params = self.params() # Set salt_len to the salt_len of the current parameters because salt # is explicitly passed to argon2. new_params.salt_len = current_params.salt_len update_salt = must_update_salt(decoded["salt"], self.salt_entropy) return (current_params != new_params) or update_salt def harden_runtime(self, password, encoded): # The runtime for Argon2 is too complicated to implement a sensible # hardening algorithm. pass def params(self): argon2 = self._load_library() # salt_len is a noop, because we provide our own salt. return argon2.Parameters( type=argon2.low_level.Type.ID, version=argon2.low_level.ARGON2_VERSION, salt_len=argon2.DEFAULT_RANDOM_SALT_LENGTH, hash_len=argon2.DEFAULT_HASH_LENGTH, time_cost=self.time_cost, memory_cost=self.memory_cost, parallelism=self.parallelism, ) class BCryptSHA256PasswordHasher(BasePasswordHasher): """ Secure password hashing using the bcrypt algorithm (recommended) This is considered by many to be the most secure algorithm but you must first install the bcrypt library. Please be warned that this library depends on native C code and might cause portability issues. """ algorithm = "bcrypt_sha256" digest = hashlib.sha256 library = ("bcrypt", "bcrypt") rounds = 12 def salt(self): bcrypt = self._load_library() return bcrypt.gensalt(self.rounds) def encode(self, password, salt): bcrypt = self._load_library() password = password.encode() # Hash the password prior to using bcrypt to prevent password # truncation as described in #20138. if self.digest is not None: # Use binascii.hexlify() because a hex encoded bytestring is str. password = binascii.hexlify(self.digest(password).digest()) data = bcrypt.hashpw(password, salt) return "%s$%s" % (self.algorithm, data.decode("ascii")) def decode(self, encoded): algorithm, empty, algostr, work_factor, data = encoded.split("$", 4) assert algorithm == self.algorithm return { "algorithm": algorithm, "algostr": algostr, "checksum": data[22:], "salt": data[:22], "work_factor": int(work_factor), } def verify(self, password, encoded): algorithm, data = encoded.split("$", 1) assert algorithm == self.algorithm encoded_2 = self.encode(password, data.encode("ascii")) return constant_time_compare(encoded, encoded_2) def safe_summary(self, encoded): decoded = self.decode(encoded) return { _("algorithm"): decoded["algorithm"], _("work factor"): decoded["work_factor"], _("salt"): mask_hash(decoded["salt"]), _("checksum"): mask_hash(decoded["checksum"]), } def must_update(self, encoded): decoded = self.decode(encoded) return decoded["work_factor"] != self.rounds def harden_runtime(self, password, encoded): _, data = encoded.split("$", 1) salt = data[:29] # Length of the salt in bcrypt. rounds = data.split("$")[2] # work factor is logarithmic, adding one doubles the load. diff = 2 ** (self.rounds - int(rounds)) - 1 while diff > 0: self.encode(password, salt.encode("ascii")) diff -= 1 class BCryptPasswordHasher(BCryptSHA256PasswordHasher): """ Secure password hashing using the bcrypt algorithm This is considered by many to be the most secure algorithm but you must first install the bcrypt library. Please be warned that this library depends on native C code and might cause portability issues. This hasher does not first hash the password which means it is subject to bcrypt's 72 bytes password truncation. Most use cases should prefer the BCryptSHA256PasswordHasher. """ algorithm = "bcrypt" digest = None class ScryptPasswordHasher(BasePasswordHasher): """ Secure password hashing using the Scrypt algorithm. """ algorithm = "scrypt" block_size = 8 maxmem = 0 parallelism = 1 work_factor = 2**14 def encode(self, password, salt, n=None, r=None, p=None): self._check_encode_args(password, salt) n = n or self.work_factor r = r or self.block_size p = p or self.parallelism hash_ = hashlib.scrypt( password.encode(), salt=salt.encode(), n=n, r=r, p=p, maxmem=self.maxmem, dklen=64, ) hash_ = base64.b64encode(hash_).decode("ascii").strip() return "%s$%d$%s$%d$%d$%s" % (self.algorithm, n, salt, r, p, hash_) def decode(self, encoded): algorithm, work_factor, salt, block_size, parallelism, hash_ = encoded.split( "$", 6 ) assert algorithm == self.algorithm return { "algorithm": algorithm, "work_factor": int(work_factor), "salt": salt, "block_size": int(block_size), "parallelism": int(parallelism), "hash": hash_, } def verify(self, password, encoded): decoded = self.decode(encoded) encoded_2 = self.encode( password, decoded["salt"], decoded["work_factor"], decoded["block_size"], decoded["parallelism"], ) return constant_time_compare(encoded, encoded_2) def safe_summary(self, encoded): decoded = self.decode(encoded) return { _("algorithm"): decoded["algorithm"], _("work factor"): decoded["work_factor"], _("block size"): decoded["block_size"], _("parallelism"): decoded["parallelism"], _("salt"): mask_hash(decoded["salt"]), _("hash"): mask_hash(decoded["hash"]), } def must_update(self, encoded): decoded = self.decode(encoded) return ( decoded["work_factor"] != self.work_factor or decoded["block_size"] != self.block_size or decoded["parallelism"] != self.parallelism ) def harden_runtime(self, password, encoded): # The runtime for Scrypt is too complicated to implement a sensible # hardening algorithm. pass class MD5PasswordHasher(BasePasswordHasher): """ The Salted MD5 password hashing algorithm (not recommended) """ algorithm = "md5" def encode(self, password, salt): self._check_encode_args(password, salt) hash = hashlib.md5((salt + password).encode()).hexdigest() return "%s$%s$%s" % (self.algorithm, salt, hash) def decode(self, encoded): algorithm, salt, hash = encoded.split("$", 2) assert algorithm == self.algorithm return { "algorithm": algorithm, "hash": hash, "salt": salt, } def verify(self, password, encoded): decoded = self.decode(encoded) encoded_2 = self.encode(password, decoded["salt"]) return constant_time_compare(encoded, encoded_2) def safe_summary(self, encoded): decoded = self.decode(encoded) return { _("algorithm"): decoded["algorithm"], _("salt"): mask_hash(decoded["salt"], show=2), _("hash"): mask_hash(decoded["hash"]), } def must_update(self, encoded): decoded = self.decode(encoded) return must_update_salt(decoded["salt"], self.salt_entropy) def harden_runtime(self, password, encoded): pass